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QUESTIONS ABOUT CLIMATE CHANGE

Are atmospheric CO2  and other greenhouse gases increasing?
What human or other activities are responsible?

Is Earth’s temperature increasing?
Can temperature increase be quantitatively understood and

related to causes?

What future temperature increases (and other climate changes)
can be expected? What is the uncertainty?

What is the take-home message regarding climate change?
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m-2



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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GEOGRAPHICAL VARIATION OF ATMOSPHERIC RADIATION
Annual average radiative flux at top of atmosphere, W m-2

Emitted thermal infrared Reflected shortwave
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CERES (Clouds and Earth’s Radiant Energy System satellite, March, 2000 - May, 2001



RADIATIVE FORCING OF CLIMATE CHANGE

A change in a radiative flux term in the Earth’s radiation
budget, ∆F, W m-2.

Working hypothesis:
On a global basis radiative forcings are additive and
fungible.

The radiative forcing concept underlies much of the
assessment of climate change over the industrial period.



CARBON DIOXIDE INCREASE
AND RADIATIVE FORCING
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing 
over the last thousand years
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CARBON DIOXIDE MIXING RATIO AND
CUMULATIVE EMISSIONS, 1800-2000
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IMPULSE PROFILES FOR ATMOSPHERIC
CARBON DIOXIDE
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CARBON DIOXIDE MIXING RATIO AND
RADIATIVE FORCING, 1800-2000
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CARBON DIOXIDE FORCING, 1960-2000
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FUTURE ATMOSPHERIC CO2
Projection of CO2 mixing ratio and forcing due to

anthropogenic emissions from 1750 to 2000
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OBSERVATIONS ABOUT CO2

The residence time of excess atmospheric CO2 is ~100 years.

CO2 from land use emissions was the dominant contribution to
excess CO2 and its climate forcing over the last century.

CO2 from fossil fuel combustion now the dominant
contribution to excess CO2 and its climate forcing.

Fossil fuel CO2 emissions are increasing with time constant of
~40 years.

Excess CO2 now in the atmosphere is ~40 years’ emissions.

Present excess CO2 and its forcing will persist for centuries.



GREENHOUSE GAS MIXING RATIOS OVER THE INDUSTRIAL PERIOD
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GREENHOUSE GAS FORCINGS OVER THE INDUSTRIAL PERIOD
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Level  of Scientific Understanding
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IS EARTH’S TEMPERATURE
INCREASING?



GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD
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OCEAN SURFACE TEMPERATURE ANOMALY
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NORTHERN HEMISPHERE TEMPERATURE
OVER 2000 YEARS
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GREENHOUSE GASES AND TEMPERATURE 
OVER 450,000 YEARS
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Prediction is difficult,
  especially about the future.

– Niels Bohr



CLIMATE RESPONSE
The change in global and annual mean temperature,
∆T, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature depends on
the magnitude of the forcing, not its nature or its
spatial distribution.

∆T = λ  F

CLIMATE SENSITIVITY

The change in global and annual mean temperature per
unit forcing, λ , K/(W m-2).
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TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

• How much will the global mean temperature change?
∆∆∆∆T = λλλλ  F

where F is the forcing and λ  is the climate sensitivity.

- A  forcing is a change in a radiative flux component,  W m-2.

- Forcings are thought to be additive and fungible.

• What is Earth’s climate sensitivity?
- U.S. National Academy Report (Charney, 1979):

“ We estimate the most probable global warming for a doubling of CO2 to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001):

“ Climate sensitivity [to CO2 doubling] is likely to be in the range
1.5 to 4.5˚C.
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This level of uncertainty is not very useful for policy planning.
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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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HOW CAN CLIMATE SENSITIVITY BE DETERMINED?

Climate sensitivity λ = ∆T F/

• Climate models evaluated by performance on prior climate change,
and/or

• Empirical determination from prior climate change.

• Either way, ∆T and F must be determined with sufficiently small
uncertainty to yield an uncertainty in λ   that is useful for informed
decision making.
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CLIMATE SYSTEM RESPONSE
TO FORCING



TIME CONSTANTS OF EARTH’S
CLIMATE SYSTEM

Consider a perturbation to the climate system

How long does it take for the system to adjust to the new state?

There are many time constants:

Minutes. It gets cooler when the sun goes “behind a cloud.”

Hours. It is cooler at night than during the day; but there is a
lag.

Months. It is colder in winter than in summer, but there is a lag.

Years. Thermal buffering of the ocean mixed layer.

Thousands of years. The deep oceans.

Millions of years. Thermal mass of the whole planet (Kelvin
and the age of Earth)



RATE OF GLOBAL HEATING
DUE TO ENERGY IMBALANCE

Global energy balance: 
dH

dt
Q E= −

Q is absorbed solar energy    E is emitted longwave flux

Global mean temperature: 
dT

dt

Q E

C
=

−

C is  pertinent heat capacity C f c z= =w w w m
-2 -1 W yr m  Kρ 9 4.

fw = fraction of Earth covered by oceans, 0.71

cw = specific heat of water

ρw = density of water

zm = depth of mixed ocean layer, 100 m

For energy imbalance Q E−  = 1 W m-2, dT dt/  = 0.1 K yr-1.
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BILLIARD BALL TEMPERATURE
SENSITIVITY AND TIME

CONSTANT
Evaluated according to the

Stefan-Boltzmann radiation law

Global energy balance: 
dH

dt
Q E Q T= − = − σ 4

Initially Q T0 0
4= σ

Temperature sensitivity: ∆ ∆T Qss = −λ 1 ;        ∆ ∆T t Q e t( ) = −− −λ τ1 1( )/

For Stefan-Boltzmann planet sensitivity is λS-B
-1 =

T

Q4

Relaxation time constant is τ λS-B S-B= = −TC

Q
C

4
1

Unknown


Unknown




BILLIARD BALL TEMPERATURE
SENSITIVITY AND TIME

CONSTANT
Evaluated according to the

Stefan-Boltzmann radiation law

For Q S0 0 4= γ /  where S0 is the solar constant = 1370 W m-2

and γ  is global mean co-albedo = 0.69

Climate sensitivity is λS-B
-1  = 0.27 K/(W m-2)

For ocean fraction 0.71 and mixed layer depth 100 m

Climate time constant τS-B =  2.5 yr.
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This is a very forgiving result!



GLOBAL TEMPERATURE
SENSITIVITY AND TIME
CONSTANT INCLUDING

FEEDBACKS

Global energy balance: C
dT

dt
Q E J T= − = −γ εσS

4
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f is denoted the “feedback factor.”

τ λ= −C 1 as before.
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TEMPERATURE RESPONSE TO
LINEARLY INCREASING

FORCING

C
dT

dt
t J T= + −β γ εσS

4              β  = dforcing/dtime

∆ ∆ ∆T t t e H t C T tt( ) [( ) ] ( ) ( )/= − + = =− −βλ τ τ τ1  and  ββτ τ τ τ[( ) ]/t e t− + −

(λ−1 and τ  are the same as before; τ λ= −C 1 )

Whence:              
dH dt

dT dt
C

/

/
= =−

τ
λ 1

 
For             and t T t t/ , ( ) ( )τ λ β τ> = −−

∼ 3 1∆ ∆HH t t( ) ( )= −βτ τ

Whence:              λ
β

− =1 1 dT

dt
        and        τ

β
=

1 dH

dt
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EVALUATION OF CLIMATE SYSTEM
SENSITIVITY AND TIME CONSTANT

Recall λ
β

− =1 1 dT

dt
 and τ

β
=

1 dH

dt
.

Forcing increase rate (CO2 plus methane):  β  = 0.0284 W m-2 yr-1.

For dT/dt = 0.014 K yr-1        λ−1 = 0.49 K/(W m-2);        ∆T2×  = 2 K

For dH/dt = 0.13 ± 0.05 W m-2        τ  = 4.6 ± 1.8 yr.

This sensitivity is consistent with current understanding.

But there are compelling indications that these results may be very
misleading.
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WHAT’S MISSING FROM THIS STORY?



WHAT’S MISSING FROM THIS STORY?

RADIATIVE FORCING
BY AEROSOLS
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 May 8  June 2

 June 3  June 11

LIGHT SCATTERING BY ANTHROPOGENIC AEROSOLS, 2000

SEAWIFS images



AEROSOL INFLUENCES ON
RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
Light scattering -- Cooling influence
Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
More droplets -- Brighter clouds (Twomey)
More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
Absorbing aerosol heats air and evaporates clouds



GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter
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ELEMENTS OF AEROSOL FORCING

Forcing depends on amount of material present and on aerosol
microphysical and optical properties (size, single scattering
albedo, ability to nucleate cloud drops).

Amount of material present depends on emissions, atmospheric
chemistry, and removal.

Anthropogenic emissions are associated largely with fossil fuel
combustion (sulfate, soot, secondary organics),  biomass
burning (organics and soot), mineral dust from disturbed
soils.

Removal occurs mainly by precipitation with residence time of
about a week.



Level  of Scientific Understanding
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WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

• Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

• Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.

steve
The U.S. Department of Energy has initiated a new research program examining aerosol chemistry and physics pertinent to radiative forcing of climate change.



ADDING UP THE FORCINGS
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TEMPERATURE INCREASE
Projection of mixing ratio, forcing, and temperature increase

due to anthropogenic emissions from 1750 to 2000
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Climate sensitivity and actual increase depend on aerosol forcing.

This temperature increase will persist and will be additive to
increases from future emissions.



IMPLICATIONS OF AEROSOL FORCING
• Aerosol negative (cooling) forcing is likely offsetting a

substantial fraction of positive (warming) forcing by
greenhouse gases.

• A substantial fraction of the forcing of 40 years of CO2
emissions is being offset by a week’s worth of aerosol.

• The aerosol forcing is likely responsible for the low apparent
climate sensitivity based on greenhouse gas forcing only.

• It is very likely that the global warming due to CO2 and other
GHG’s is substantially greater than has been experienced
thus far.

• The uncertainty in aerosol forcing and the resultant
uncertainty in total forcing over the industrial period are so
great as to preclude meaningful empirical inference of
climate sensitivity and evaluation of climate models.



SOME CONCLUDING OBSERVATIONS
• GHG concentrations and forcing are increasing. GHGs persist

in the atmosphere for decades to centuries.

• Global mean temperature trends and many other indicia point
to a warming world.

• Aerosol forcing is comparable to GHG forcing but much more
uncertain. Aerosols are short-lived in the atmosphere.

• The sensitivity of the climate system is highly uncertain but is
almost certainly substantially greater than is inferred based on
GHG forcing alone.

• Decisions on GHG policy must be made in an uncertain
world. Lack of controls on GHG emissions is also a decision.
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